
1 

 

Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a 1 

surface energy balance-based method 2 

Aolin Jiaa, Han Mab, Shunlin Lianga,*, and Dongdong Wanga 
3 

a Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA 4 

b School of remote sensing and information engineering, Wuhan University, Wuhan, Hubei 5 

430079, China 6 

*Correspondence to: Shunlin Liang (sliang@umd.edu) 7 

 8 

Abstract 9 

Land surface temperature (LST) has been effectively retrieved from thermal infrared 10 

(TIR) satellite measurements under clear-sky conditions. However, TIR satellite data are often 11 

severely contaminated by clouds, which cause spatiotemporal discontinuities and low retrieval 12 

accuracy in the LST products. Several solutions have been proposed to fill the “gaps”; however, 13 

a majority of these possess constraints. For example, fusion methods with microwave data suffer 14 

from coarse spatial resolution and diverse land cover types while spatial-temporal interpolation 15 

methods neglect cloudy cooling effects. We developed a novel method to estimate cloudy-sky 16 

LST from polar-orbiting satellite data based on the surface energy balance (SEB) principle. First, 17 

the hypothetical clear-sky LST of missing or likely cloud-contaminated pixels was reconstructed 18 

by assimilating high-quality satellite retrievals into a time-evolving model built from reanalysis 19 

data using a Kalman filter data assimilation algorithm. Second, clear-sky LST was hypothetically 20 

corrected by accounting for cloud cooling based on SEB theory. The proposed method was 21 

applied to Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging 22 

Spectroradiometer (MODIS) data, and further validated using ground measurements of fourteen 23 

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0034425721002868
Manuscript_1c10b911f9e6dfb8a0dc1ec32300333b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0034425721002868


2 

 

sites from SURFRAD, BSRN, and AmeriFlux in 2013. VIIRS LST recovered from cloud gaps 24 

exhibited a root mean square error (RMSE) of 3.54 K, a bias of −0.36 K, R2 of 0.94, and sample 25 

size (N) of 2,411, comparable to the accuracy of clear-sky LST products and cloudy-sky LST 26 

estimation from MODIS (RMSE of 3.69 K, bias of −0.45 K, R2 of 0.93, and N of 2,398). Thus, 27 

the proposed method performs well across different sensors, seasons, and land cover types. The 28 

abnormal retrieval values caused by cloud contamination were also corrected in the proposed 29 

method. The overall accuracy was better than the downscaled cloudy-sky LST retrieved from 30 

passive microwave (PMW) observations and former SEB-based cloudy-sky LST estimation 31 

methods. Validation using time-series measurements showed that the all-sky LST time series, 32 

including both clear- and cloudy-sky retrievals, can capture realistic variability without sudden 33 

abruptions or discontinuities. RMSE values for the all-sky LST varied from 2.54 to 4.15 K at the 34 

fourteen sites. Spatially continuous LST maps over the Contiguous United States were compared 35 

with corresponding maps from PMW data in the winter and summer of 2018, exhibiting similar 36 

spatial patterns but with additional spatial details. Moreover, sensitivity analysis suggested that 37 

the reconstruction of clear-sky LST dominantly impacts the accuracy of cloudy-sky LST 38 

estimation. The proposed method can be potentially implemented in similar satellite sensors for 39 

global real-time production. 40 

 41 
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1. Introduction 45 

By reflecting the state of exchange of energy and water at the surface-atmosphere 46 

interface, land surface temperature (LST) is an essential parameter in surface radiation and 47 

hydrological balances at regional and global scales (Chen and Liu, 2020; Li et al., 2013; Liang et 48 

al., 2019; Liang et al., 2010). LST has been extensively used in many applications, such as 49 

evapotranspiration estimation, drought prediction, and monitoring climate warming and 50 

environmental change (Hansen et al., 2010; Jia et al., 2020; Tomlinson et al., 2011; Xu et al., 51 

2019). However, given the complexity and high heterogeneity of LST caused by topography, 52 

land cover, and soil type (Liu et al., 2006; Luyssaert et al., 2014), there is an urgent need to 53 

obtain spatiotemporally continuous LST data over large areas. Satellite remote sensing is the 54 

only feasible approach for mapping LST over the entire globe (Li et al., 2013; Liang, 2017; Wan 55 

and Li, 1997).  56 

Satellite LST products are mostly derived from thermal infrared (TIR) observations, such 57 

as the Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan, 2006; Zhou et al., 2018), 58 

Visible Infrared Imaging Radiometer Suite (VIIRS) (Islam et al., 2016), Landsat (Sobrino et al., 59 

2004), Geostationary Operational Environmental Satellite (GOES)-R (Yu et al., 2008), and 60 

Advanced Very-High-Resolution Radiometer (AVHRR) (Liu et al., 2019). However, TIR ground 61 

signals cannot be observed under cloudy sky conditions, leading to null-value pixels in satellite-62 

derived LST products affected by cloud coverage. Moreover, some retrieved pixels may still be 63 

contaminated by clouds and have low accuracy. These spatially and temporally incomplete LST 64 

products significantly restrict their subsequent application at regional and global scales. 65 

Therefore, eliminating cloud contamination and filling cloud gaps in LST products are highly 66 

prioritized in relevant research.  67 
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A number of methods have been developed to estimate LST under cloudy sky conditions; 68 

they can be mainly divided into four categories: passive microwave (PMW) data-based, spatial-69 

temporal interpolation, machine learning, and surface energy balance (SEB) methods. 70 

PMW remotely sensed data can penetrate clouds and have been considered an important 71 

solution for cloudy-sky LST estimations. Many PMW LST algorithms have been proposed, 72 

which can be grouped into three classes: empirical (Chen et al., 2011; Holmes et al., 2009; Owe 73 

and Van De Griend, 2001; Zhou et al., 2015), semiempirical (Chen et al., 2011; Fily et al., 2003; 74 

Gao et al., 2007), and physical (Njoku and Li, 1999; Wen et al., 2003; Weng and Grody, 1998) 75 

methods. The achieved accuracies vary by up to 6 K for the global LST diurnal cycle (Dash et al., 76 

2002). However, PMW observations remain limited owing to a number of issues. First, the low 77 

rate of change in the PMW radiance with a high variance in surface emissivity causes difficulties 78 

in estimating LST with acceptable accuracy (Zhang et al., 2019a). Furthermore, microwave data 79 

with a coarse spatial resolution fail to capture spatial details. Finally, temperature retrieval from 80 

PMW observations yields subsurface temperature, which is different from the skin temperature 81 

retrieved from TIR data (Galantowicz et al., 2011). Recent studies have attempted to generate 82 

all-weather LST by fusing PMW with TIR observations at regional scales (Duan et al., 2017; 83 

Kou et al., 2016; Xu and Cheng, 2021; Zhang et al., 2019b; Zhang et al., 2020). However, global 84 

surface and atmospheric conditions are complex, and statistical parameters cannot be easily 85 

applied. Moreover, PMW data still contain large swath gaps in the middle and low latitudes. 86 

Therefore, downscaling and fusion methods are not practical at a global scale. 87 

Multiple spatial-temporal interpolation methods have been proposed to resolve problems 88 

caused by cloud contamination. Basic spatial interpolation methods include inverse distance 89 

weighting (IDW), kriging interpolation (Neteler, 2010; Westermann et al., 2011), and 90 
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representative temporal reconstruction methods using the harmonic analysis of time series 91 

(HANTS) algorithm (Xu and Shen, 2013), temporal Fourier analysis, and asymmetric Gaussian 92 

function fitting method. Spatial-temporal interpolation methods treat spatiotemporally 93 

neighboring pixels as references. Nevertheless, the interpolation accuracy relies on the 94 

distributions of the pixels and the surface homogeneity. Therefore, interpolation methods usually 95 

have a smoothing effect, and extreme LST variation may not be well captured. Moreover, 96 

climate factors are not considered, and statistics-based interpolations do not follow the physical 97 

relationships among basic environmental variables. For example, clouds usually have negative 98 

radiative forcing at the surface level while the cloudy-sky LST is lower than that of clear-sky 99 

cases. Theoretically, interpolated LST is hypothetical clear-sky LST rather than cloudy-sky LST.  100 

Considering that simple statistical models can only be utilized under limited conditions, 101 

machine learning has recently shown an extraordinary ability to capture surface complexity and 102 

reconstruct missing remotely sensed data (Das and Ghosh, 2017; Nogueira et al., 2018; Zhang et 103 

al., 2016; Zhang et al., 2018). Rao et al. (2019) estimated the all-weather surface air temperature 104 

over the Tibetan Plateau using the Cubist model. However, this requires spatiotemporally 105 

continuous input data. Wu et al. (2019) employed conventional neural networks to reconstruct 106 

geostationary satellite LST. Nevertheless, this model is based on statistical information with no 107 

constraints from environmental factors. Zhao and Duan (2020) estimated cloudy-sky LST by 108 

implementing random forest, incorporating training data from clear-sky days. As the accuracy is 109 

comparable to the reanalysis data, further assessment using site observations is needed. Fu et al. 110 

(2019) coupled the random forest model with the weather research and forecasting (WRF) model 111 

and retrieved urban LST under cloudy conditions. The accuracy varied from 1.0 to 9.0 K across 112 

different land cover. In general, machine learning methods rely heavily on the sampling amount 113 
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and quality of input; if sample representativeness is regionally limited, the model cannot be used 114 

for large areas, and it is difficult to collect globally distributed training data. Moreover, machine 115 

learning remains statistics-based and offers no clear physical interpretations, making uncertainty 116 

analysis unfeasible. Therefore, a practical physical method for estimating cloudy-sky LST is 117 

required. 118 

Jin (2000) proposed a neighboring-pixel (NP) approach to estimate the LST of cloudy 119 

pixels based on SEB theory. This approach mainly includes two steps: (1) reconstructing clear-120 

sky LST for a target cloudy pixel using reference information from spatially or temporally 121 

neighboring clear-sky LST, and (2) correcting the reconstructed clear-sky LST to the real 122 

cloudy-sky LST by adding the cloud effect of the LST estimated from all-sky downward 123 

shortwave radiation (DSR) with SEB equations (Liang, 2004). Near-surface meteorological 124 

observations (air temperature and wind) are therefore required. As the SEB method is physically 125 

based and the driving factors (such as the DSR) are available in all weather conditions, it has 126 

significant potential for cloudy-sky LST estimations. Following this approach, Lu et al. (2011) 127 

estimated cloudy-sky LST by exploiting the temporal domain from geostationary Meteosat 128 

Second Generation. Yu et al. (2014) applied this method to the MODIS LST product. However, 129 

ground-measured environmental variables are still required, yielding difficulties in implementing 130 

this method for ungauged or poorly gauged regions. Zeng et al. (2018) revised the method to use 131 

vegetation indices for neighboring similar pixel selection. They also obtained regional 132 

parameters from clear-sky neighboring pixels and applied them to the cloudy effect correction. 133 

Thus, no ground meteorological measurements were required in the algorithm, allowing 134 

implementation at large spatial scales. Such vegetation index-based methods were also used by 135 

Yang et al. (2019). However, spatially neighboring pixels are not always available if clouds 136 
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cover large areas; searching for similar neighboring pixels is time-consuming. The linear 137 

relationships between vegetation indices and LST are not reliable (Sun and Kafatos, 2007; Yuan 138 

et al., 2020), especially in non-growing seasons. This is because vegetation index values for the 139 

entire image can be low while the LST still has spatial variance affected by soil moisture and 140 

terrain. Therefore, a more feasible SEB-based cloudy-sky LST estimation method that can be 141 

applied at a large spatial scale is necessary. 142 

Moreover, previous research has predominantly focused on cloud gap filling, whereas the 143 

reconstruction of some retrieved, but cloud-contaminated pixels has been rarely discussed (Yang 144 

et al., 2019). These pixels may cause uncertainty while noted as contextual information in 145 

previous studies. Compared with polar-orbiting satellite products, reanalysis data have the 146 

advantage of spatiotemporal continuity (Jia et al., 2018; Zhang et al., 2021). As reanalysis data 147 

are upgraded to a new generation, they attain a higher accuracy and resolution compared with 148 

former generations, providing a new possibility to combine them with satellite retrievals to 149 

estimate cloudy-sky LST and remove cloud contamination (Long et al., 2020; Zhang et al., 2021). 150 

The objective of this study was to develop a generic SEB-based physical method for 151 

estimating cloudy-sky LST from different polar-orbiting satellite data (e.g., MODIS and VIIRS). 152 

We first reconstructed hypothetical clear-sky LST of cloudy pixels and likely cloud-153 

contaminated pixels by assimilating high-quality satellite retrieved LST into a time-evolving 154 

model built from the European Centre for Medium-Range Weather Forecasts (ECMWF) 155 

Reanalysis 5th Generation (ERA5) reanalysis data (Hersbach et al., 2020) using a Kalman filter 156 

(KF) algorithm. Furthermore, we estimated the LST differences resulting from cloud impacts 157 

according to SEB theory. This method is an extension of our recently developed simultaneous 158 

retrieval algorithm (Ma et al., 2020; Ma et al., 2017; Ma et al., 2018; Shi et al., 2017), which 159 
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simultaneously inverts multiple environmental variables with physical consistency from optical-160 

thermal top of atmosphere (TOA) remote sensing observations. 161 

 162 

2. Methods and Data 163 

2.1 Flowchart description 164 

The proposed method comprises two steps (Figure 1). The first step was to construct the 165 

hypothetical clear-sky LST for cloud-contaminated and cloudy pixels. Modeled clear-sky LST 166 

over one year from reanalysis data was calibrated using satellite LST retrievals through a KF, 167 

and the hypothetical clear-sky LST was reconstructed for missing days or days likely 168 

contaminated by clouds. The second step was to estimate the net effect of clouds on the 169 

hypothetical clear-sky LST. The cloud effect was calculated from the ground heat flux, which is 170 

an energy-partitioned component of the net radiation. Further, the cloud was superposed to the 171 

reconstructed LST for the cloudy days.  172 

 173 

Figure 1. Flowchart of the proposed cloudy-sky land surface temperature (LST) estimation 174 

method, where DLW and ULW are the downward and upward longwave radiation, respectively, 175 
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BBE is the broadband emissivity, DSR is the downward shortwave radiation, LAI is the leaf area 176 

index, and ΔG and ΔLST are the cloud effect on the ground heat and LST, respectively. 177 

 178 

First, the hypothetically clear-sky LST was reconstructed for all likely cloud-179 

contaminated and cloudy days. For a target LST product pixel, corresponding clear-sky LST 180 

series were used for building a clear-sky LST annual dynamic model (a time-evolving model), 181 

computed from the clear-sky longwave radiation of the ERA5 reanalysis data. This model 182 

predicts the clear-sky surface longwave radiation over one year. Although the clear-sky LST is 183 

estimated from clear-sky longwave radiation components with surface broadband emissivity 184 

(Equation 1), it does not respond to the ERA5 skin temperature, which is an all-weather surface 185 

temperature. Clear-sky longwave radiation components are simulated for the same temperature 186 

and humidity atmospheric conditions as the corresponding real condition while assuming the 187 

absence of clouds.  188 

The first estimation of the annual temporal profile of the clear-sky LST was obtained 189 

after spatial downscaling. However, the dynamic model, built from the reanalysis datasets, may 190 

not provide accurate predictions due to the limitations in the downscaling method and model 191 

parameterization. To increase the prediction accuracy and calibrate the dynamic model, clear-sky 192 

LST retrievals of the pixel over one year were assimilated by the KF to the annual dynamic 193 

model. Furthermore, a hypothetically clear-sky LST was reconstructed for all cloudy days of the 194 

year. Sections 2.2 and 2.3 present further details on this step. 195 

Secondly, the cloud effect was superposed on the reconstructed clear-sky LST based on 196 

SEB theory. Theoretical clear-sky DSR in targeted cloudy days and corresponding realistic 197 

cloudy-sky DSR from the simultaneous retrieval were used as the basic inputs of a trained 198 
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multivariate adaptive regression spline (MARS) model (Jiang et al., 2016) to estimate the cloud 199 

net radiative forcing on cloudy days. After partitioning the cloud net radiative forcing to the 200 

ground heat component, the cloud effect of the LST was estimated based on the conventional 201 

force-restore method. Section 2.4 presents details on the second step. 202 

 203 

2.2 Clear-sky LST annual dynamic model 204 

The dynamic model was used to predict the hypothetical clear-sky LST for each cloud-205 

affected day over one year. The ERA5 officially publishes spatiotemporally continuous clear-sky 206 

surface downward and upward longwave radiation (DLW and ULW, respectively), which were 207 

employed to estimate the clear-sky LST series as follows: 208 

��� = ����	(�	�)���
��

�
,                                                       (1) 209 

where ��  is the broadband emissivity (BBE), which can be obtained from the Global 210 

Land Surface Satellite (GLASS) BBE product (Cheng et al., 2015). However, the modeled clear-211 

sky LST has a coarser spatial resolution. By following Duan et al. (2017), we applied a practical 212 

downscaling method to obtain the first estimate of the clear-sky LST series as follows: 213 

�� = �� +  ��� × (�� − ��) +  � × (�� − ��),                                 (2) 214 

where ��  is the downscaled LST at a resolution (0.01°); ��  is the LST at the original coarse 215 

spatial resolution (0.25 °); the second component on the right is the correction for elevation: TLR 216 

is the temperature lapse rate, which is defined as the rate of decrease in temperature with altitude, 217 

whose average is 6.5 K/km (Minder et al., 2010); and �� is surface elevation of the ith pixel at 218 

the satellite pixel scale while �� is the averaged surface elevation of the modeled pixel. We 219 

added the third component for correcting the vegetation influence, K, which is the linear 220 

regression slope between the satellite-derived 1-km clear-sky LST and the corresponding LAI 221 
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under the target coarse model pixel within 8 days. Furthermore, �� and �� are the LAI values of 222 

the ith pixel at the satellite pixel scale and averaged model pixel scale, respectively. The third 223 

component was not included if the p-value of the regression was larger than 0.05 because the 224 

relationship between the LST and vegetation coverage may not be reliable, especially during the 225 

non-growing season or sparsely vegetated areas. Such a downscaling method was also used for 226 

the all-sky PMW LST in the analysis. 227 

Therefore, the downscaled continuous clear-sky LST series was treated as the 228 

corresponding annual dynamic model. The annual dynamic model is a time-evolving model that 229 

can be described mathematically as follows: 230 

��� = ! × ��� 	�,                                                      (3) 231 

! = 1 + �
#$% & × '#$

' ,                                                       (4) 232 

where Zt represents the difference in the clear-sky LST at day t and day t – 1, which is the 233 

temporal profile from the LST dynamic model over one year, and ( = 0.01 avoids a null 234 

denominator. As the clear-sky LST is computed from the ERA5 modeled longwave radiation 235 

with uncertainty, spatially downscaling and assimilating satellite LST retrievals with high 236 

accuracy is necessary to calibrate the annual dynamic model prediction. The ERA5 clear-sky 237 

LST was extracted based on the passing time of the satellite each day. Only the estimated clear-238 

sky LST series, rather than the ERA5 all-sky skin temperature, were employed because a more 239 

accurate cloud effect estimated from the satellite products was superimposed in subsequent steps. 240 

 241 

2.3 Kalman Filter 242 

Owing to the modeling uncertainty, there are differences between the real LST variation 243 

and prediction of the dynamic model built for a target pixel. Therefore, when a newly retrieved 244 
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LST is available, it is assimilated into the dynamic model by the KF to fit the real condition. 245 

Such a frame is suitable for use as future real-time all-sky LST production. The KF calculates the 246 

weighted average of the dynamic model result and real-time retrievals according to the criterion 247 

of the minimum mean square error (Bishop and Welch, 2001). The prediction (Equations 5 – 7) 248 

process was as follows: 249 

)* = +* + ,*,                                                          (5) 250 

+-	* = .+-*	� + /*	�,                                                  (6) 251 

0	* = .0*	�.1 + 2,                                                   (7) 252 

where, )* , the clear-sky LST obtained from satellite observations at day k, is represented by 253 

the retrieved LST value, +*, with retrieval error, ,* (covariance is R), +-	* is the prior estimate of 254 

the clear-sky LST directly from the annual dynamic model, A, and /*	� is the model error with a 255 

covariance of Q.  256 

We determined R via the nominal accuracy in the quality control (QC) of the LST 257 

product: if the nominal accuracy (bit 14 & 15) was marked as excellent, R = 1; if it is good, R = 4; 258 

if it is marginal, R = 9; and if it is poor, R = 16. Therefore, R was adjusted as new retrievals were 259 

obtained to meet the spatiotemporal variability in the LST retrieval accuracy. The initial value of 260 

Q was equal to the squared ERA RMSE, where ERA RMSE is the RMSE of ERA5 clear-sky 261 

LST, calculated by comparing samples on clear days with satellite retrievals over one year. Only 262 

the high-quality retrieved LST (not contaminated by clouds) was assimilated into the dynamic 263 

model, and the likely contaminated samples were marked by a cloud flag (thin cirrus or a pixel 264 

within two pixels of the nearest cloud), with poor nominal accuracy (Duan et al., 2017). These 265 

retrieved, but likely contaminated, cases were reconstructed and validated separately to 266 
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demonstrate the feasibility of the proposed method at different cloud disturbance conditions. The 267 

LST of the VIIRS simultaneous retrieval refers to the QC from the VNP21 product.  268 

0	* is the prior covariance estimate after model prediction. The second step corrected the 269 

modeling using new observations (Equations 8 – 10):  270 

+-* = +-	* +  �*()* − +-	*),                                              (8) 271 

0* = (3 − �*)0	*,                                                        (9) 272 

�* = 0	*(0	* + �)	�.                                                  (10) 273 

The correction part included the final clear-sky LST estimation (+-*) corrected from the 274 

+-	* via the Kalman Gain (�*); based on the difference between the model prediction and LST 275 

retrieval, the final output covariance was 0* . �*  is the combination of 0	*  and R, which 276 

indicates that as the retrieval uncertainty, R, increases, �*  decreases, resulting in fewer 277 

corrections for +-	*, predicted by the dynamic model. By evolving the KF, the reconstruction of 278 

the clear-sky LST in a time-series can be calculated and the prediction uncertainty can be 279 

updated continuously.  280 

 281 

2.4 SEB-based method 282 

After clear-sky LST ( ��4567 ) construction, the correction of the cloud effect (∆�� ), 283 

estimated from Rn cloud radiative forcing, was added to obtain the real cloudy-sky LST (��49:'): 284 

��49:' = ��4567 + ∆��,                                                    (11) 285 

where ∆�� can be derived using SEB theory, which is expressed as follows:  286 

�; = �; + �; = < + �= + �,                                             (12) 287 
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where �; is the balance of the net shortwave radiation (�;) and net longwave radiation (�;). 288 

Moreover, �; is also the energy source of ground heat (G), latent heat (LE), and sensible heat 289 

(H).  290 

To calculate the cloud effect of the LST, we must quantify the ground heat, G, which is 291 

the energy partitioned component, using the Land Surface Analysis Satellite Application 292 

Facilities (LSA-SAFs) ET algorithm (Arboleda et al., 2017) as follows: 293 

< = >�;,                                                            (13) 294 

> = 0.5B+C (−2.13(0.88 − 0.78B+C (−0.6�.3))),                          (14) 295 

where > = 0.15, 0.05, and 0.10 for rocks, snow, and inland water, respectively. Based on the 296 

conventional force-restore method, G can be also represented as follows (Jin and Dickinson, 297 

2000): 298 

< = IJ K1
∆# = IJ 1	1L

∆# ,                                                   (15) 299 

where IJ is the thermal conductivity of the ground soil (W m–1 K–1) and ∆M is the depth of the 300 

subsurface layer (usually set as 0.1 m). Considering that the subsurface layer temperature, �', is 301 

significantly less sensitive than the LST (Ts) to the DSR, equation (15) can be modified as 302 

follows: 303 

KN
K1 = K

K1 OIJ 1	1L
∆# P ≈ *R

∆#,                                              (16) 304 

Therefore, after quantifying ∆< from the partitioned energy of the cloudy net radiative 305 

forcing, the cloud effect correction (∆��) can be computed if ∆<, ∆M, and IJ are known.  306 

Following Zeng et al. (2018), we computed IJ  from neighboring clear-sky days and 307 

applied it to cloudy days in the same pixel. First, the differences of the clear-sky LST for any 308 

paired days in a month were calculated. For these paired clear-sky days, ∆<  can be directly 309 
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calculated. By obtaining ∆<  and ∆LST  on clear-sky days, the IJ  of all paired days can be 310 

computed (Equation 16); the monthly median IJ was used in this study to avoid extreme values 311 

caused by small temperatures or ground heat differences. Previous studies usually implemented a 312 

constant IJ for a specific soil type (Yu et al., 2014; Zhang et al., 2015) while the monthly IJ was 313 

used to reflect the impact of changes in the soil moisture.  314 

Therefore, this section introduces a SEB-based method for estimating cloud radiative 315 

forcing. The essential theory relies on the relationship between the ground heat flux and LST 316 

(Equations 15 and 16) while assuming that the in-depth soil temperature remains stable. The 317 

ground heat flux was parameterized by the all-sky LAI and Rn, which can be directly obtained 318 

from the simultaneous retrieval method or current operational satellite products. 319 

 320 

2.5 Daytime Rn estimation 321 

As the longwave radiation components could not be obtained directly, we developed and 322 

trained the MARS model to estimate Rn from shortwave radiation components in the daytime. 323 

Based on previous studies (Jiang et al., 2016; Jiang et al., 2015), the daytime Rn can be estimated 324 

from the DSR, albedo, and other meteorological variables (e.g., the 2-m air temperature and total 325 

column water vapor) using the MARS model. To train the Rn model, training samples were 326 

extracted from the ERA5 records at 13:00 LT. MARS was only employed to duplicate the 327 

parameterization of the ERA5 Rn; we did not create a new Rn algorithm. Specifically, 600 328 

locations were randomly selected over global land. Half of the samples were used for Rn model 329 

training (sampling in 2011–2012) while the remaining samples were used for validating MARS 330 

prediction accuracy (in 2013) by comparing the output with the ERA5 noon Rn. Figure 2 shows 331 

the training and prediction validation results. 332 
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 333 

Figure 2. Validation of the multivariate adaptive regression splines (MARS) modeled Rn by 334 

comparison with the ERA5 Rn in terms of the (a) training accuracy and (b) prediction accuracy. 335 

 336 

The training accuracy of the MARS Rn was 17.41 W m–2 with no bias while the 337 

prediction accuracy was 17.82 W m–2 with a bias of 0.03 W m–2. The training and validation 338 

samples are location and time-independent; thus, the model had no overfitting issue. Further, the 339 

relative accuracy of the prediction was < 3 %, confirming that MARS can effectively duplicate 340 

the parametrization of the ERA5 Rn. The final inputs of the MARS model in this study included 341 

surface environmental variables (DSR, albedo, leaf area index [LAI], and clear index [DSR 342 

divided by the TOA DSR]) derived from the simultaneous retrieval, and atmospheric information 343 

(air temperature and total column water vapor) obtained from the ERA5, which were bilinearly 344 

interpolated. All previous cloudy-sky LST estimations based on SEB theory used the linear 345 

relationship to convert DSR to heat fluxes (Lu et al., 2011; Yu et al., 2014; Zeng et al., 2018), 346 

which introduced more uncertainties and coefficients that were not feasible at a large scale; in 347 

comparison, this method reduced the uncertainty of the surface energy balance estimation. 348 

 349 
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2.6 PMW LST calculation 350 

In order to compare the validation statistics and assess the all-sky LST imagery recovery 351 

of the proposed method, PMW observations were used to obtain all-sky LST for comparison. 352 

The Four-Channel Algorithm (Mao et al., 2007) was employed to convert the brightness 353 

temperature (BT) to the LST by combining the PMW observations at different frequencies. The 354 

BT difference in the 36.5 and 23.8 GHz channels in vertical polarization was used to minimize 355 

the influence of atmospheric water vapor; T36.5V–T18.7H compensates for the influence of 356 

surface water while T89V decreases the average influence of the atmosphere (Sun et al., 2019). 357 

This can be expressed mathematically as follows: 358 

��� = VW + V��XY.Z[ + V\(�XY.Z[ − �\X.][) + VX(�XY.Z[ − ��].^_) + V`�]a[,        (16) 359 

where T represents the BTs and the subscripts denote frequencies in GHz for different bands; B0–360 

B4 are regression coefficients obtained by the regression of the PMW BTs with the aggregated 361 

TIR LST on clear-sky days, further applied to the cloudy day cases. PMW BTs have a coarser 362 

spatial resolution of 0.1°. Moreover, TIR LST data were converted to lat/lon coordinates and 363 

aggregated to 0.1 ° only when 95 % of the 1-km pixels were retrieved in each aggregation group.  364 

 365 

2.7 Data 366 

In this study, we employed the clear-sky LST from VIIRS using the simultaneous 367 

retrieval method; the ERA5 clear-sky LST series was used for building the LST annual dynamic 368 

model. To demonstrate its feasibility with other polar-orbiting satellites, MODIS LST (MYD21) 369 

was also included. Fourteen ground sites from the Surface Radiation (SURFRAD) network, 370 

Baseline Surface Radiation Network (BSRN), and AmeriFlux were used for validation. Cloudy-371 

sky LST, estimated from Advanced Microwave Scanning Radiometer 2 (AMSR2) microwave 372 
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observations, were utilized for comparison. Further details of the data are given below; Tables 1 373 

and 2 list the metadata. 374 

 375 

2.7.1 Satellite data  376 

The satellite products used in this study included outputs of the VIIRS simultaneous 377 

retrieval, LST products from the MODIS and VIIRS operational products, surface radiation 378 

components from the CERES products, auxiliary variables from the GLASS, and microwave 379 

observations from AMSR2. Table 1 summarizes the information and usages. 380 

The MODIS and VIIRS clear-sky LST values can be obtained from the MODIS and 381 

VIIRS LST products; however, LST estimated using a simultaneous retrieval method provides a 382 

more accurate LST estimation. Ma et al. (2017) developed a simultaneous retrieval scheme to 383 

estimate a suite of parameters from both MODIS VNIR and thermal-infrared (IR) bands, based 384 

on a unified optical-thermal soil-canopy-leaf (PROSPECT + 4 SAIL) radiative transfer model, 385 

and an ensemble KF assimilation framework. The LAI was first determined by data assimilation 386 

and was then treated as a basic input parameter to produce the Fraction of Absorbed 387 

Photosynthetically Active Radiation (FAPAR), surface albedo, and land surface spectral 388 

emissivity (LSE). The ECOSTRESS spectral library (for twelve soil types) and UCSB spectral 389 

library (five leaf types) were employed. VIIRS directly observes the radiance at five middle 390 

infrared (MIR) and TIR bands, which was corrected to surface radiance using the satellite 391 

sounder product from the atmospheric infrared sounder (AIRS). With the determined spectral 392 

emissivity, the optimized LST can be determined by comparing the MIR–TIR surface radiances 393 

from the observations and calculations of the LSE and candidate LST. This method has been 394 

applied to VIIRS data (Ma et al., 2018), where the accuracy of the retrieved clear-sky LST was 395 
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~3 K higher than the VIIRS LST product. Further, a simultaneous retrieval scheme was revised, 396 

and an optimization method was used to assimilate the TOA observations to constrain the 397 

coupled model prediction. The DSR, LAI, albedo, LSE, and LST can be retrieved together (Ma 398 

et al., 2020). The accuracy of the instantaneous DSR can reach 102.9 W m–2, which is better than 399 

the operational DSR products. This study applied the latest simultaneous retrieval scheme to the 400 

TOA VIIRS data from 2013 at 14 sites. The retrieved clear-sky LST was the basic input of the 401 

clear-sky LST reconstruction step. Furthermore, the instantaneous all-sky DSR, LAI, and albedo 402 

were included in the cloudy effect correction step. The clear-sky LST of MYD21 (Hulley et al., 403 

2016) was employed to show that the proposed method is sensor independent and can be directly 404 

applied to different polar orbiting satellites during the daytime. The basic input for the MYD21 405 

cloudy-sky LST was the same as the VIIRS but was accordingly extracted based on the MYD 406 

passing time. The DSR was converted to match the MYD21 passing time based on the time 407 

difference of the two satellites and the daily diurnal profile of DSR variation. The time profile 408 

was directly obtained from the spline-interpolated CERES SYN1deg-1hour product.  409 

For cloudy-sky LST mapping, we used the all-sky DSR from the MODIS 3-h downward 410 

shortwave radiation (MCD18) product (Wang et al., 2020). The 3-h MCD18 was interpolated by 411 

a cosine function to obtain the noon all-sky DSR. The chosen year was 2018 because the newest 412 

MCD18 version was temporarily available. Eleven tiles, covering the Contiguous United States 413 

(CONUS), as well as from the VIIRS operational LST product (VNP21), were used. Other 414 

surface variables (such as the LAI and BBE), required for image recovery, were obtained from 415 

the GLASS all-sky product suites (Liang et al., 2014; Liang et al., 2013; Liu et al., 2013; Xiao et 416 

al., 2016).  417 
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To calculate the cloud net radiative forcing, the spline-interpolated clear-sky DSR series 418 

was extracted from the CERES SYN1deg-1hour clear-sky surface radiation products (Kato et al., 419 

2018). The CERES SYN1deg products were retrieved from a combination of polar satellites 420 

(Terra + Aqua) with geostationary satellites (Loeb et al., 2018), which are based on the Fu-Liou 421 

radiative transfer theory (Fu et al., 1997). CERES provides daily theoretical 1º hourly clear-sky 422 

radiation products, which were estimated from all-weather radiation products by removing the 423 

cloudy impact; related cloud parameters were retrieved from multiple data sources, including 424 

microwave sensors (CERES_Team, 2013). The clear-sky DSR usually has limited spatial 425 

variability; thus, we directly used the bilinear interpolation to match the spatial scale and a spline 426 

interpolation to the diurnal profile to extract the clear-sky DSR at the VIIRS or MODIS passing 427 

time.  428 

To compare the validation accuracy and assess the estimated cloudy-sky spatial pattern, 429 

PMW observations were used for calculating the all-sky LST. The AMSR2, onboard the GCOM-430 

W1 satellite, is used for measuring PMW from Earth. The passing time is 13:30 LT, which is 431 

similar to the National Polar-orbiting Partnership (NPP) and Aqua satellites. It observes MW 432 

radiation from Earth’s surface at seven frequencies (6.9, 7.3, 10.7, 18.7, 23.8, 36.5, and 89 GHz) 433 

in horizontal and vertical polarizations (Imaoka et al., 2010); we used 18.7, 23.8, 36.5, and 89 434 

GHz at level 2A brightness temperatures to calculate the LST.  435 

 436 

2.7.2 Reanalysis data 437 

ERA5 provided the clear-sky longwave radiation components for building the LST 438 

annual dynamic model (Hersbach et al., 2020). Clear-sky longwave radiation components were 439 

simulated for the same temperature and humidity atmospheric conditions as the corresponding 440 
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real condition (clouds included) while assuming that the clouds were absent. The clear-sky LST 441 

series utilized in this study can provide LST changes caused by local atmospheric variation or 442 

weather conditions without cloud forcing. The Rn MARS model requires the ERA5 samples for 443 

training and validation. The required variables for MARS training include the DSR, albedo, LAI, 444 

2-m air temperature, total column water vapor, and Rn. The air temperature and total column 445 

water vapor are involved because they are the basic parameters of the atmospheric profiles (Wan 446 

and Li, 1997). The MARS Rn model is built from global land ERA5 samples to duplicate its Rn 447 

parameterization. We followed Jiang et al. (2016) and did not aim to propose a new Rn 448 

estimation method. The air temperature and total column water vapor were bilinearly 449 

interpolated while being utilized for satellite pixels. 450 

 451 

Table 1. Metadata for the gridded satellite and reanalysis data.  452 

Product Variable Time-

span 

Spatial 

resolution 

Temporal 

resolution 

Usage 

ERA5 clear-sky 

DLW, ULW 

2013, 

2018 

0.25 ° hourly clear-sky LST 

dynamic model 

GLASS BBE 2013, 

2018 

1 km daily LST calculation from 

ULW & DLW 

GMTED2010 DEM 2013, 

2018 

1 km annual LST downscaling 

simultaneous 

retrieval 

method 

clear-sky 

LST 

2013 1 km instantaneous VIIRS hypothetical 

clear-sky LST 

reconstruction 
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MYD21 clear-sky 

LST 

2013 1 km instantaneous MODIS hypothetical 

clear-sky LST 

reconstruction 

ERA5 Air 

temperature, 

total water 

vapor, DSR, 

albedo, 

DLW, and 

ULW 

2011– 

2013 

0.25 ° hourly MARS Rn modeling 

simultaneous 

retrieval 

method 

DSR 2013 1 km instantaneous cloud effect 

calculation 

CERES clear-sky 

DSR 

2013, 

2018 

1° hourly cloud effect 

calculation 

simultaneous 

retrieval 

method 

albedo 2013 1 km instantaneous cloud effect 

calculation 

simultaneous 

retrieval 

method 

LAI 2013 1 km daily cloud effect 

calculation 

MCD18A1 DSR 2018 1 km 3-hourly all-sky LST mapping 

VNP21 clear-sky 2018 1 km instantaneous all-sky LST mapping 
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LST 

GLASS albedo 2018 1 km daily all-sky LST mapping 

GLASS LAI 2013, 

2018 

1 km daily downscaling and all-

sky LST mapping 

AMSR2 PMW BT 2018 10 km instantaneous all-sky LST spatial 

comparison 

*Data references are in the text and download sources are listed in the Acknowledgements. 453 

 454 

2.7.3 Ground in situ measurements 455 

Ground-observed LST for different surface types and climate regions was necessary to 456 

assess the proposed algorithm. 14 ground sites from SURFRAD, BSRN, and AmeriFlux were 457 

utilized for cloudy-sky LST validation. Established in 1993, SURFRAD was designed to support 458 

climate research with accurate, continuous, and long-term measurements of the surface radiation 459 

budget over the United States (Augustine et al., 2000). It has been widely used for LST 460 

validation (Li et al., 2013; Wang and Liang, 2009). BSRN (Ohmura et al., 1998) is a network 461 

that collects globally distributed sites from different projects. It has been in operation for one of 462 

the longest durations, with good quality first-class instruments and strict maintenance (Wang and 463 

Dickinson, 2013). The AmeriFlux network (Novick et al., 2018) measures ecosystem carbon, 464 

water, and energy fluxes across America, and has committed to producing and sharing high-465 

quality eddy covariance data. Selected BSRN and AmeriFlux sites are located above a latitude of 466 

45° to ensure that the sites widely cover different areas and surface types. Equation (1) was also 467 

used in the site LST calculation as the surface temperature was not directly recorded. BBE was 468 

extracted from the GLASS BEE product. All site observations were quality controlled by 469 

individual quality marks.  470 
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The raw site observations with 1-min temporal resolution were averaged in a 15-min time 471 

window that was centered over the daily satellite passing time. In addition, the site observations 472 

with half-hour temporal resolution were extracted by pairing the closest records with the satellite 473 

passing time. Bias, RMSE, and R2 were used as validation indices (Jia et al., 2016). Table 2 lists 474 

the basic site information.  475 

 476 

Table 2. Metadata for each site. 477 

Network Site ID Lat (°) Lon (°) Biome type Temporal 

resolution 

(min) 

SURFRAD BND 40.052 –88.373 cropland 1 

SURFRAD FPK 48.308 –105.102 grassland 1 

SURFRAD GWN 34.255 –89.873 pastureland 1 

SURFRAD DRA 36.624 –116.019 arid 

shrubland 

1 

SURFRAD PSU 40.720 –77.931 cropland 1 

SURFRAD SXF 43.734 –96.6231 grassland 1 

SURFRAD TBL 40.125 –105.237 grasslands 

and 

shrublands 

1 

AmeriFlux Ho1 45.204 –68.740 evergreen 

needleleaf 

forests 

30 
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AmeriFlux UMB 45.560 –84.714 deciduous 

broadleaf 

forests 

30 

BSRN ALE 82.490 –62.420 tundra 1 

BSRN BAR 71.323 –156.607 tundra 1 

BSRN PAY 46.815 6.944 agriculture 1 

BSRN TIK 71.586 128.919 tundra 1 

BSRN TOR 58.254 26.462 grassland 1 

 478 

3. Results and discussion 479 

3.1 Validation results 480 

Ground measurement validation was essential to evaluate the algorithm accuracy and 481 

suitability under different conditions. Figure 3a (3c) illustrates the VIIRS (MYD21) clear-sky 482 

LST samples and cloudy-sky LST against paired ground measurements at the 14 sites in 2013. 483 

Satellite retrieved, but likely cloud-contaminated samples, were separated from the clear-sky 484 

cases and compared with the reconstructed results in Figure 3b and d. The input for MYD21 was 485 

the same as that for VIIRS while the instantaneous DSR was converted from the VIIRS to the 486 

MYD passing time. 487 
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  488 

  489 

Figure 3. Validation of all-sky land surface temperature (LST) at the 14 sites: (a) VIIRS clear-490 

sky and cloudy-sky samples, (b) VIIRS likely cloud-contaminated and corresponding 491 

reconstructed samples, (c) same as (a), but for MYD21, and (d) same as (b), but for MYD21. 492 

Red samples are the retrieval results while blue samples are those recovered in this study. 493 

 494 

The overall RMSE of the estimated cloudy-sky LST of VIIRS was 3.54 K with a bias of 495 

−0.36 K and R2 of 0.94 (N = 2,411) based on the ground measurements from the 14 sites in 2013; 496 

this is slightly larger than the high-quality clear-sky LST retrieval accuracy (Figure 3a), but 497 

better than the likely contaminated retrieval results (Figure 3b). The VIIRS likely contaminated 498 
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samples had a larger RMSE of 3.80 K with a bias of –1.39 K (Figure 3b), as compared with the 499 

clear-sky samples (Figure 3a). However, after reconstruction, the results were bias-corrected (–500 

0.24 K) with an improved RMSE (3.32 K). The validation over the 14 sites demonstrated that the 501 

method can precisely estimate the cloudy-sky LST and reconstruct the clear-sky LST 502 

contaminated by clouds over different land cover types. By comparison, the cloudy-sky LST 503 

estimated from MYD21 also resulted in a similar accuracy (RMSE = 3.69 K) in relation to the 504 

VIIRS results, indicating that the method is sensor independent and can be used in similar polar-505 

orbiting satellite products. In addition, the negative bias and larger RMSE of the likely 506 

contaminated clear-sky MYD21 LST were also corrected (Figure 3d).  507 

Table 3 summarizes the individual validation statistics of the cloudy-sky LST. The 508 

cloudy-sky LST estimated from the AMSR2 PMW is also included in Table 3 for comparison. 509 

Table 3. Validation statistics for the cloudy-sky land surface temperature (LST) at the 14 sites in 510 

2013 (Unit: K). 511 

 VIIRS MYD21 AMSR2 

 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 

BND –0.46 2.86 0.94 –0.56 3.05 0.94 0.17 4.68 0.85 

FPK –1.04 4.11 0.94 –1.36 4.15 0.94 1.43 4.44 0.91 

GWN –0.52 2.56 0.93 0.28 2.88 0.93 –2.08 4.38 0.84 

DRA 0.54 3.90 0.93 –0.75 4.13 0.91 –2.37 5.51 0.89 

PSU 0.11 2.71 0.95 –0.32 2.61 0.94 –1.22 2.87 0.95 

SXF –0.02 2.78 0.96 –0.79 3.26 0.94 0.40 4.10 0.91 

TBL –0.70 4.91 0.89 0.42 5.41 0.86 –2.51 4.98 0.91 

Ho1 0.31 2.81 0.94 0.21 2.80 0.94 0.05 3.53 0.91 
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UMB 1.00 4.33 0.88 –0.24 4.08 0.86 0.22 4.55 0.88 

ALE –0.17 3.38 0.89 0.21 3.91 0.88 –1.67 5.52 0.87 

BAR –1.25 3.65 0.86 –1.11 3.65 0.80 –0.45 6.36 0.66 

PAY 0.22 3.91 0.84 –0.61 3.58 0.86 0.67 4.02 0.81 

TIK –1.92 4.48 0.94 0.11 5.68 0.92 –1.76 5.09 0.93 

TOR –1.69 3.00 0.96 –1.44 2.52 0.97 –0.08 4.82 0.86 

 512 

Based on the validation statistics, the cloudy-sky LST accuracy of the VIIRS 513 

simultaneous retrieval varied from 2.56 to 4.91 K over the 14 sites and the standard deviation of 514 

the RMSE was 0.76 K. In addition, the accuracy of the MYD21 cloudy-sky LST had a similar 515 

accuracy in the range from 2.61 to 5.68 K. The largest RMSE of the VIIRS results was at the 516 

TBL site, and the temporal variation in Figure 4g indicates that the LST at TBL had a 517 

considerably larger variation magnitude on neighboring days, especially in the winter and spring, 518 

which was difficult to predict. The cloudy-sky LST estimated from the AMSR2 PMW using the 519 

Four-Channel Algorithm was downscaled, resulting in an overall lower accuracy of 4.47 K with 520 

a bias of –0.45 K and R2 of 0.89. The individual site accuracy varied from 2.87 to 6.36 K with a 521 

standard deviation of 0.87 K. The validation statistics of the 14 sites suggest that the revised 522 

SEB-based cloudy-sky method shows better accuracy and stability than the Four-Channel PMW 523 

estimation method.  524 

Zeng et al. (2018) also developed an SEB-based cloudy-sky LST estimation method; 525 

vegetation indices were used as reference data to search neighboring similar pixels for 526 

reconstructing the hypothetical clear-sky LST for cloudy days. The individual accuracy assessed 527 

by the Mean Bias Error (MBE) at six SURFRAD sites (PSU not included) varied from 3.65 to 528 
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6.69 K in 2010. We also calculated the MAE for the VIIRS in this study, where the individual 529 

accuracy at the six sites varied from 1.89 to 3.85 K. We inferred that simply borrowing the 530 

information from spatially neighboring pixels based on the vegetation indices may not be 531 

accurate for reconstruction during non-growing seasons. Additionally, spatially neighboring 532 

pixels are not usually available for short distances. Directly referring pixels from neighboring 533 

clear-sky days usually overlooks the weather disturbance because clear-sky LST changes 534 

considerably on a daily basis in comparison with the accuracy requirement, even if the 535 

neighboring days are all cloud-free. By comparison, the reanalysis modeling can provide such 536 

variation, thus improving the accuracy.  537 

Our method was more accurate and stable at different sites, indicating that it significantly 538 

improved upon the accuracy of previous SEB-based cloudy-sky LST estimation methods. To 539 

demonstrate the temporal continuity at each site, Figure 4 shows the temporal variations in the 540 

all-sky VIIRS LST and site measurements.  541 

  542 

  543 
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 546 

 547 
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 548 

Figure 4. Temporal variations in the all-sky land surface temperature (LST) from the Visible 549 

Infrared Imaging Radiometer Suite (VIIRS) and site measurements. The difference for each day 550 

is marked by the stem plots using the right y-axis. 551 

 552 

By combining the retrieved VIIRS clear-sky LST with the estimated cloudy-sky LST 553 

from this study, we can observe that the resulting all-sky LST has no sudden abruptions or 554 

discontinuities, and it can capture not only the general LST variation in a year, but also the 555 

realistic variabilities (Figure 4g). The accuracy of the all-sky LST varied from 2.54 to 4.15 K at 556 

the 14 sites without a clear bias. Comparisons during the polar nights were not shown in Figure 4; 557 

this study mainly focused on daytime cloudy-sky LST recovery. Figure 4g illustrates that the 558 

LST at TBL had a considerably larger variation magnitude on neighboring days, especially in the 559 

winter and spring, which was difficult to predict, causing higher errors at the TBL site (Table 3).  560 

 561 

3.2 All-sky LST mapping 562 

VIIRS all-sky LST mapping was processed (Figure 5) for 2018 when the new MCD18 563 

DSR product became recently available (MCD18 will fully be accessible since 2000 in 2021); 564 

other auxiliary data were mainly derived from the GLASS satellite products. Eleven VNP21 tiles, 565 

which cover the CONUS, were used. Therefore, we focused on the LST pattern by comparing it 566 
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with the PMW LST. For analysis, we randomly selected two days of LST patterns, one in the 567 

winter (February 23) and the other in the summer (July 15). 568 

  569 

 570 

 571 

                  572 

Figure 5. (a, b) Maps of the 1-km all-weather land surface temperature (LST), (c, d) 10-km 573 

passive microwave (PMW) LST, and (e, f) the original 1-km Visible Infrared Imaging 574 

Radiometer Suite (VIIRS) LST on February 23 and July 15, 2018.  575 

 576 
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Our results confirm that the proposed method can recover 1-km all-sky LST (Figure 5a 577 

and 5b) without spatial discontinuities. The PMW LST can also generate all-sky LST maps, but 578 

it has swath gaps and coarser spatial resolution (10 km; Figure 5c and d). The official VNP21 579 

LST, shown for reference (Figure 5e and f), was contaminated by clouds. Using the proposed 580 

method, invalid and abnormal retrieved pixels affected by clouds over large areas were recovered 581 

(Figure 5a and b) and the overall pattern matched the PMW LST (Figure 5c and d). As the basic 582 

input data, except for the clear-sky LST product, are spatially continuous, the proposed method 583 

can theoretically provide a spatiotemporal continuous map. Moreover, it does not require spatial 584 

or temporal windows for searching reference pixels, and the computation efficiency was 585 

improved compared to that reported in previous studies (Yang et al., 2019; Zeng et al., 2018). 586 

For the accuracy of the PMW LST, we did not consider the PMW LST as ground truth and only 587 

employed it to characterize the overall LST spatial pattern for comparison between seasons.   588 

 589 

3.3 Sensitivity analysis 590 

As the proposed physical method required several satellite products as inputs and the 591 

estimation of intermediate parameters, a sensitivity analysis was implemented at the 14 sites to 592 

characterize the impact and corresponding importance of each input data. Random +/− noises 593 

were added into each input data separately to increase the relative errors; the changes in the 594 

validation statistics are shown in Figure 6. 595 
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 596 

Figure 6. Root mean square error (RMSE) changes when separately adding noise to the basic 597 

input data for the (a) input data used in the clear-sky LST reconstruction and (b) input data used 598 

in the cloud effect calculation. 599 

As shown in Figure 6a and b, the input variable that leads to the highest sensitivity is the 600 

clear-sky LST. This is reasonable because it determines the accuracy of the reconstructed LST 601 

for the cloudy days, and the noise is added directly into the final cloudy-sky LST based on 602 

Equation 11. The modeled clear-sky LST series is the input data with the second highest impact. 603 

In Figure 6b, the clear-sky DSR from the interpolated CERES product is the key variable in the 604 

cloud effect calculation while the other important input data is the all-sky DSR from the 605 

simultaneous retrieval. This is because these two variables dominate the daytime Rn that highly 606 

affect the cloud effect on the ground heat and surface temperature. They play similar roles in the 607 

SEB method while the clear-sky DSR shows higher disturbance. This is because the magnitude 608 

of the clear-sky DSR is larger than the all-sky DSR on cloudy days, and more absolute errors are 609 

added in each error test. The clear-sky DSR usually has stable spatiotemporal variation and 610 

smaller relative retrieval uncertainty in the practical application.  611 

 We also calculated an overall RMSE of 4.20 K for the LST without cloud effect 612 

correction at the 14 sites, which indicates that for those cloudy days, the cloud effect correction 613 

reduced the error by approximately 0.66 K after reconstructing the clear-sky LST. The averaged 614 
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cloud effect at the 14 sites was –1.78 K with a standard deviation of 2.32 K, indicating that the 615 

cloud cooling effect on the LST cannot be neglected. The air temperature and total column water 616 

vapor were also analyzed, which are not shown in Figure 6b because the superposed data errors 617 

had similar influences on both the all-sky Rn and clear-sky Rn while the cloud radiative effect, 618 

calculated by the difference in the Rn at different sky conditions, was not impacted by such an 619 

increase in the error. Sensitivity analysis revealed that the clear-sky LST reconstruction is the 620 

most vital step in the proposed method; our method, using a dynamic model generated from 621 

reanalysis with data assimilation, is innovative and robust over different land cover types.  622 

As the clear-sky LST reconstruction is the most vital step in our approach, we compared 623 

it with three schemes to confirm that KF assimilation with the ERA5 data was the best choice to 624 

reconstruct the hypothetical clear-sky LST for cloudy days. Table 4 summarizes the validation 625 

statistics for the three schemes (reference data + fusion method: clear-sky LST climatology + KF, 626 

CERES clear-sky LST + KF, and ERA5 clear-sky LST + linear regression). The CERES clear-627 

sky LST series was computed from the clear-sky DLW and ULW series released from the 628 

CERES SYN1deg-1hour clear-sky surface radiation product. Both the LST series from CERES 629 

and ERA5 were downscaled by DEM and LAI before generating the dynamic models. 630 

 631 

Table 4. Validation statistics for the cloudy-sky land surface temperature (LST) from 632 

different schemes at the 14 sites in 2013 (Unit: K). 633 

 climatology + KF CERES + KF ERA5 + Linear 

Regression 

 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 

BND –0.50 5.41 0.81 –0.95 3.89 0.90 –0.53 2.67 0.95 
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FPK –0.26 7.56 0.77 0.12 4.50 0.92 1.20 4.13 0.93 

GWN –0.21 5.91 0.65 –1.53 3.47 0.89 –0.30 2.91 0.94 

DRA –0.37 4.48 0.91 –1.83 5.20 0.84 0.28 3.80 0.93 

PSU 1.15 6.10 0.80 –0.15 3.12 0.94 1.37 3.07 0.95 

SXF 0.56 6.20 0.82 0.28 3.82 0.82 1.26 3.41 0.95 

TBL 0.84 7.89 0.73 –1.55 7.01 0.80 –0.91 5.55 0.85 

Ho1 –0.33 5.62 0.80 –0.13 3.17 0.92 0.20 2.73 0.94 

UMB –1.51 7.41 0.74 0.86 5.36 0.84 1.39 5.42 0.79 

ALE 0.94 5.30 0.75 0.53 3.43 0.88 –1.92 5.09 0.76 

BAR –1.10 5.01 0.68 –0.15 3.96 0.80 –1.65 4.41 0.82 

PAY 2.49 6.23 0.72 0.55 4.48 0.79 2.48 4.81 0.84 

TIK 0.57 6.59 0.88 1.51 4.04 0.92 –2.67 5.15 0.94 

TOR –2.57 6.05 0.82 –1.32 2.96 0.95 –1.23 2.56 0.98 

Total –0.39 6.48 0.81 –0.37 4.40 0.90 0.31 4.05 0.91 

 634 

First, we generated the clear-sky LST climatology at the 14 sites using the MYD21 from 635 

2005 to 2019. This method was also used for LAI retrieval (Xiao et al., 2011); however, the 636 

overall validation accuracy was 6.48 K, which was significantly lower than the results of this 637 

study. We infer that this was because the LST variation from day to day is large compared with 638 

the accuracy requirement while the LAI changes slowly within a few days. For example, the best 639 

site for this scheme was DRA, which had a smooth LST variation over one year, except for 640 

several cloudy days (Figure 4d). In this area, the weather condition was sunny and dry with 641 

approximately 278 clear-sky days in 2013; this number was higher at other sites. Therefore, it 642 
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was easier to predict the LST variation based on the climatology series. In contrast, 643 

reconstructing the missing LST at site TBL was difficult, which has a considerably larger LST 644 

variation. Moreover, the land cover type is more varied; the LST for the sites covered by crops is 645 

more difficult to predict based on climatology, as the crop type may change from year to year, 646 

such as the PSU site.  647 

We also designed a scheme using CERES because it provides a clear-sky longwave 648 

radiation series based on satellite observations, which can be used for building a clear-sky LST 649 

dynamic model. The results showed that the cloudy-sky LST estimated by CERES had an RMSE 650 

of 4.40 K. We inferred that the performance of the parametrization scheme for the CERES 651 

Goddard Earth Observing System (GEOS-5.4.1) Data Assimilation System (Doelling et al., 2016) 652 

may be inferior in terms of predicting the clear-sky longwave radiation compared to that of the 653 

ERA5. The first two schemes suggest that the ERA5 is the best reference data to reconstruct 654 

clear-sky LST. 655 

Linear regression was employed to replace the KF to correct the ERA5 clear-sky series. 656 

The linear regression was processed using all clear-sky samples and applied to cloudy days, 657 

followed by the superposition of the cloud effect. The validation results of scheme 3 showed that 658 

this scheme had a higher RMSE (4.05 K) than the KF scheme used in this study. Scheme 3 659 

demonstrates that the KF was more suitable for calibrating the clear-sky LST series from the 660 

ERA5.  661 

In summary, the sensitivity analysis indicated that the clear-sky LST reconstruction 662 

controls the accuracy of the cloudy-sky LST; ERA5 provides more reliable prediction 663 

information for LST construction while the KF algorithm is the best solution for calibrating the 664 

modeled clear-sky LST series. In practical applications, the dynamic model does not have to be 665 
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the annual temporal profile, as long as the modeled clear-sky LST series and satellite LST 666 

product continue to update, the reconstruction can work efficiently. In addition, the proposed 667 

method does not require spatiotemporal window searching, which increases the computational 668 

efficiency. Therefore, the proposed scheme can be easily utilized in real-time all-sky LST 669 

production.  670 

 671 

4. Conclusions 672 

Thermal remote sensing plays a vital role in regularly monitoring LST at regional to 673 

global scales. However, clouds in the atmosphere greatly limit this capability because only clear-674 

sky LST can be estimated from TIR observations. In this study, we presented an SEB method to 675 

estimate the cloudy-sky LST from polar-orbiting satellite observations. By assimilating clear-sky 676 

satellite LST estimates using the simultaneous retrieval algorithm into a time-evolving model 677 

built using the ERA5 reanalysis data, the hypothetical clear-sky LST was reconstructed for those 678 

cloudy pixels. The cloudy-sky LST was then estimated by superposing cloud effects to the 679 

reconstructed clear-sky LST based on SEB theory.  680 

This method was validated using in situ measurements at 14 sites from SURFRAD, 681 

BSRN, and AmeriFlux during 2013; the overall RMSE of the estimated cloudy-sky LST from 682 

VIIRS data was 3.54 K with a bias of −0.36 K and R2 of 0.94 (N = 2411), which was slightly 683 

lower than the accuracy of the high-quality clear-sky LST retrieval results, but was better than 684 

the likely cloud-contaminated retrieval. The samples fell along the 1:1 line for both the low- and 685 

high- value zones at different sites, indicating that the method can be used in different seasons 686 

and with various land cover types. By separating the retrieved, but likely cloud-contaminated 687 

samples (N = 232), we also found that our reconstruction method improved the accuracy from 688 
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3.80 to 3.32 K, and the negative bias (–1.39 K) was corrected to –0.24 K. The proposed method 689 

also worked for MODIS LST estimations, which exhibited an RMSE of 3.69 K, a bias of −0.45 690 

K, and R2 of 0.93. Validation statistics demonstrated that the proposed method had better 691 

accuracy than the downscaled cloudy-sky LST estimated from the AMSR2 PMW data. The 692 

temporal variation in the reconstructed all-sky LST revealed that the estimated LST was 693 

temporally continuous and matched ground-based site measurements. The accuracies of the all-694 

sky LST varied from 2.54 to 4.15 K at the 14 sites. The validation results indicated that the 695 

proposed SEB-based physical method was generic for different polar-orbiting satellite LST 696 

retrievals (e.g., MODIS and VIIRS) and could estimate the LST under cloudy-sky conditions in 697 

the daytime. It could also correct the cloud contamination for clear-sky retrieved cases. 698 

Moreover, it could be combined with a simultaneous retrieval algorithm with physical 699 

consistency. 700 

The proposed method can be potentially implemented globally to generate real-time 701 

spatially continuous maps with good spatial resolution. We evaluated the spatial patterns of the 702 

estimated LST results from VNP21 on February 23 and July 15, 2018, over the CONUS, which 703 

were compared with the AMSR2 PMW LST and the originally released LST from VNP21. The 704 

results revealed that this method was able to reconstruct the contaminated LST values, fill the 705 

pixels covered by clouds over large areas, and efficiently match the spatial pattern of the PMW 706 

LST both in winter and summer. The imagery results had more spatial details than those of the 707 

PMW LST, as the spatial resolution was significantly higher than the PWW observations.  708 

Sensitivity analysis was conducted to investigate the importance of the input data in the 709 

physical method. The clear-sky LST, to be assimilated in the dynamic model, was the most 710 

important input for the cloudy-sky LST estimation. Large errors in the DSR also affected the 711 
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cloud effect correction. However, the estimated LST was less sensitive to the soil thermal 712 

conductivity and LAI. We also calculated an overall RMSE of 4.20 K for the LST without cloud 713 

effect correction; in other words, the cloud effect correction reduced the error by ~0.66 K. 714 

Comparatively, the clear-sky LST reconstruction controlled the ultimate accuracy because its 715 

error was directly inherited by the cloudy-sky LST. The proposed method provides an innovative 716 

approach to process this step. Finally, a comparison of three schemes demonstrated that 717 

calibrating the ERA5 clear-sky LST using the KF is the best solution for reconstructing the 718 

hypothetical clear-sky LST for cloudy days. 719 

By assimilating the retrieved LST from remote sensing data to a time-evolving model 720 

built by reanalysis data, we proposed a generic cloudy-sky LST estimation method for polar-721 

orbiting satellites. This method has the potential to be efficiently applied for global real-time 722 

production without gaps. This is a development of the simultaneous retrieval algorithm, which 723 

can maintain the all-sky LST and other outputs, such as the DSR, albedo, and LAI, with physical 724 

consistency. In the future, we intend to apply this method to geostationary satellite LST products, 725 

at which point continuous LST series data will be used to generate all-sky evapotranspiration and 726 

sensible heat datasets. 727 
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List of Figure Captions 1018 

 1019 

Figure 1. Flowchart of the proposed cloudy-sky land surface temperature (LST) estimation 1020 

method, where DLW and ULW are the downward and upward longwave radiation, respectively, 1021 

BBE is the broadband emissivity, DSR is the downward shortwave radiation, LAI is the leaf area 1022 

index, and ΔG and ΔLST are the cloud effect on the ground heat and LST, respectively. 1023 

 1024 

Figure 2. Validation of the multivariate adaptive regression spline (MARS) modeled Rn by 1025 

comparison with the ERA5 Rn in terms of the (a) training accuracy and (b) prediction accuracy. 1026 

 1027 

Figure 3. Validation of all-sky land surface temperatures (LSTs) at the 14 sites: (a) VIIRS clear-1028 

sky and cloudy-sky samples, (b) VIIRS likely cloud-contaminated and corresponding 1029 

reconstructed samples, (c) same as (a), but for MYD21, and (d) same as (b), but for MYD21. 1030 

Red samples are the retrieval results while blue samples are those recovered in this study. 1031 

 1032 

Figure 4. Temporal variations in the all-sky land surface temperature (LST) from the Visible 1033 

Infrared Imaging Radiometer Suite (VIIRS) and site measurements. The difference for each day 1034 

is marked by the stem plots using the right y-axis. 1035 

 1036 

Figure 5. (a, b) Maps of the 1-km all-weather land surface temperature (LST), (c, d) 10-km 1037 

passive microwave (PMW) LST, and (e, f) the original 1-km Visible Infrared Imaging 1038 

Radiometer Suite (VIIRS) LST on February 23 and July 15, 2018.  1039 

 1040 
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Figure 6. Root mean square error (RMSE) changes when separately adding noise to the basic 1041 

input data for the (a) input data used in the clear-sky LST reconstruction and (b) input data used 1042 

in the cloud effect calculation. 1043 

 1044 




